Name: Period: Seat#:	
----------------------	--

Give the number of significant figures in each of the following:

	<u> </u>	<u>_</u>	
1) 402 m	2) 34.20 lbs	3) 0.03 sec	4) 0.00420 g
5) 3200 liters	6) 0.0300 ft.	7) 5.1 x 10 ⁴ kg	8) 0.48 m
9) 1400.0 m	10) 78323.01 g	11) 1.10 torr	12) 760 mm Hg

Multiply each of the following, observing significant figure rules:

13) 17 m x 324 m =	14) 1.7 mm x 4294 mm =
15) 0.005 in x 8888 in =	16) 0.050 m x 102 m =
17) 0.424 in x .090 in =	18) 324000 cm x 12.00 cm =

Divide each of the following, observing significant figure rules:

bivide each of the following, observing significant righter dies.		
19) 23.4 m ÷ 0.50 sec =	20) 12 miles ÷ 3.20 hours =	
21) 0.960 g ÷ 1.51 moles =	22) 1200 m ÷ 12.12 sec =	
21) 0.300 g ÷ 1.31 moles =	22) 1200 III ÷ 12.12 360 =	

Add or subtract each of the following, observing significant figure rules:

mig, case imig eiginieani ngare i	
24) 102.45 g + 2.44 g + 1.9999 g	25) 102. cm + 3.14 cm + 5.9 cm
27) 14.33 g - 3.468 g	28) 234.1 cm – 62.04 cm
	24) 102.45 g + 2.44 g + 1.9999 g

Work each of the following problems, observing significant figure rules:

29) Three determinations were made of the percentage of oxygen in mercuric oxide. The results were 7.40% 7.43%, and 7.35%. What was the average percentage?
30) A rectangular solid measures 13.4 cm x 11.0 cm x 2.2 cm. Calculate the volume of the solid.
31) If the density of mercury is 13.6 g/ml, what is the mass in grams of 3426 ml of the liquid?
32) * optional * A copper cylinder is 12.0 cm in radius and has a height of 44.0 cm. If the density of copper is 8.90 g/cm ³ , calculate the mass in grams of the cylinder. Remember that the equation for volume is $v = \pi r^2 h$ (assume $pi = 3.14$)
Sig Fig Activity – Done in class.